Compiled and adapted from White Rose (April 2020) by H. Garratt

This policy contains all of the key procedures that are taught throughout the school. It has been written to ensure consistency and progression throughout the school, therefore every teacher must be familiar with which procedures are assigned to their year group and must follow the layout so that children are not confused as they move through school.

We are aiming to get each child to show fluency, reasoning and problem solving skills from EYFS - Year 6 .

- Although the main focus of the policy is showing the core Concrete, Pictorial and Abstract approach to solving Maths problems and calculations, it is important to recognise that the ability to calculate mentally lies at the heart of mathematics.
- Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method, there is an element of mental processing.
- Written recordings help children clarify their thinking, as well as support and extend the development of more fluent and sophisticated mental strategies.
- Children are encouraged to use the most efficient method for them, making sure they use ones they have a clear understanding of and that are most efficient for the task.
- The long-term aim is for children to be able to select an efficient method of their choice that is appropriate for a given task. They should do this by always asking themselves:
- Do I need manipulatives* to help me?
- Can I do this using drawings and/or jottings?
- Do I need to use a written method?
- Can I do this in my head?

When you believe children are secure in a method/procedure, you should then expose them to reasoning and problem solving that increases in difficulty. This will help them to choose the most efficient way to solve any tasks without being burdened by how to carry out a procedure. Do not just move the children onto the next method. The strategy needs time to embed and children need time to apply and deepen their understanding before moving to a new method.

[^0]

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
$\begin{gathered} \text { EYFS } \\ \text { yI } \end{gathered}$	Regrouping to make 10	Using ten frames and counters/cubes $6+5$ * Children will learn that the cubes/ objects can be put in different squares but still represent the same amount (see alternative layout in pictorial version)	Children to draw the counters/ cubes into ten frames. Alternatively, the children can draw the counters in rows of 5 to reflect the ten frame layout.	Children to develop an understanding of equality $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \\ & 6+5=11 \end{aligned}$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Y2	Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Y1, y^{2}	$\begin{aligned} & T 0+0 \\ & \text { using base } \\ & 10 \end{aligned}$	Continue to develop understanding of partitioning and place value. $41+8=$	Children to represent the base 10 with lines for 10 s and dots for $1 s$	Using the part whole model to mentally calculate with jottings $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\begin{array}{r}41 \\ +\quad 8 \\ \hline 49\end{array}$ Leading to a formal written method to refine jottings

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
Y2	$T O+0$ using base 10 with regrouping	$45+8$ exchange 10 ones for a 10 stick before counting to get the total	Children to represent the base 10 with lines for 10 s and dots for $1 s$ $50+3=53$	Write jottings/steps down $\begin{aligned} & 45+8=? \\ & 5+5=10 \\ & 40+10=50 \\ & 50+3=53 \\ & 45+8=53 \end{aligned}$
$\begin{aligned} & \text { y2, } \\ & \text { y3 } \end{aligned}$	$\begin{aligned} & T 0+T 0 \\ & \text { using base } \\ & 10 \end{aligned}$	Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart	Looking for ways to make 10 and write down jottings. $\begin{array}{l\|l} \text { tings. } \\ 36+25= \\ \Lambda_{5} \\ \hline \end{array} \begin{aligned} & 30+20=50 \\ & 5+5=10 \\ & 50+10+1=61 \end{aligned}$ Leading to the formal method: Regrouping to be written below Children to be encouraged to cross out any numbers below the total bar when they have added them to the total so that they are not forgotten.
$\begin{aligned} & \text { y3, } \\ & \text { y4 } \end{aligned}$	Use of place value counters to add HTO + TO, HTO + HTO etc (up to 3 digits Y3)	When there are 10 ones in the Is column, we exchange for I ten counter. When there are 10 tens counters in the IOs column, we exchange for 1 hundred counter. $243+368=611$	Children to represent the counters in a place value chart, circling when they make an exchange.	Formal method (only when secure with exchanging with place value counters) Regrouping to be written below Children to be encouraged to cross out any numbers below the total bar when they have added them to the total so that they are not forgotten.

Jesson's C.E. Primary School Calculation Policy

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { EYFS } \\ & \text { YI, Y2 } \end{aligned}$	Finding the difference	Using cubes, Numicon, counters, bead strings and other small objects. Tens frames can be used to organise objects too. Calculate the difference between 8 and 5 . 8 is 3 more than 5 5 is 3 less than 8 My sister is 3 years older than me, she is 8 Part-part-whole model: If 8 is the whole, and 5 is one of the parts, what is the other part?	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. Part-part-whole circles can be used too. 00000000 $00000 \longleftarrow ?$	As well as 8-5 = ? , children explore 'difference between' Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
$\begin{aligned} & \text { EYFS } \\ & \text { YI, Y2 } \end{aligned}$	Making 10 using tens frames	Children become more fluent in knowing that a single digit can be broken down into 2 parts: $14-5=$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
yl, y2	Making 10 using number lines	Use number lines or number tracks. Teacher to expose children to examples where it is better to count back and examples where it is easier to count on because the values are close. This example is better to count on as 34 is very close to 28. Children will need to be exposed to counting back more than 10 also. 34-28=	Children to represent what they see pictorially and discuss what they did to make 10. $34-28=$	Just the number line needed. Children making jumps to the nearest 10

Jesson's C.E. Primary School Calculation Policy

Jesson's C.E. Primary School Calculation Policy

Year ${ }^{\text {Strategy }}$		Concrete		Pictorial	Abstract
$\begin{aligned} & y 5, \\ & y 6 \end{aligned}$	As Year 4 but with increasingly difficult amounts, decimals and having to exchange across 3 columns (for example 1000-2536) When exchanging across 3 columns because the top number is a 1000 s number, allow children the time to physically do this with place value counters or base 10 so that they understand the process of exchanging.		Children column been ta has bee	draw the counters into the correct and cross out to show how many have n away, remembering to show what exchanged.	
Conceptual variation; different ways to ask children to solve 391-186					
391 186	?	Raj spent $£ 391$, Timmy spent € 186 . How much more did Raj spend? Calculate the difference between 391 and 186 .		$=391-186$ What is 186 less than 391?	Missing digit calculations

MULTIPLICATION

Key language：double，times，multiplied by，the product of，groups of，lots of，equal groups．				
Year	Strategy	Concrete	Pictorial	Abstract
$\begin{gathered} \text { EYFS } \\ \text { yI } \end{gathered}$	Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double $4=8$ Lead to 2 digit numbers by partitioning tens and ones	$4+4=8$ $2 \times 4=8$ Partition a number and then double each part before recombining it back together．
$\begin{aligned} & \text { y2, } \\ & \text { y3 } \end{aligned}$	Doubling	Model doubling using dienes and place value counters． Double $26=$	Represent the base 10 pictorially using sticks and stones（lines and dots）	$40+12=52$

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
YI, y2	Repeated grouping/ repeated addition	Place objects into cups, bowls, circles etc to show repeating the same number of objects in the group $\begin{aligned} & 3 \times 4(3 \text { lots of } 4) \\ & 4+4+4 \end{aligned}$ There are 3 equal groups with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
$\begin{aligned} & \text { YI, } \\ & \text { y2, } \\ & \text { y3 } \end{aligned}$	Number lines to show repeated groups	Children lay out cubes, Numicon or Cuisenaire rods in a straight line next to each other in a horizontal line. 3×4	Represent this pictorially alongside a number line	Abstract number line showing three jumps of four. $3 \times 4=12$

Jesson's C.E. Primary School Calculation Policy

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { y2, } \\ & \text { y3, } \\ & \text { y } \end{aligned}$	Using the Inverse	This should be taught alongside division, so pupils learn how they work alongside each other.	Use fact families to write equations from the arrays.	Use fact families to write equations from the arrays.
$\begin{aligned} & \text { y2, } \\ & \text { y3 } \end{aligned}$	Partition to multiply 2 digit $x 1$ digit	Use base 10 or Numicon to represent numbers 4×15 Group tens and ones Exchange 10 ones for a 10 stick to get final answer:	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used

Jesson's C.E. Primary School Calculation Policy

Conceptual variation; different ways to ask children to solve 6×23

Jesson's C.E. Primary School Calculation Policy

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
$\begin{gathered} \text { EYFS } \\ \text { YI, } \\ \text { Y2, } \\ \text { Y3 } \end{gathered}$	Division as grouping EYFS YI, Y2: $2 \mathrm{~s}, 5$ and $10 s$ (3s if ready) Y3: use this for new times tables	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $10 \div 2=5$ groups of 2 $35 \div 5=7$ groups of 5 Bead strings can be used to model the process.	Use number lines for grouping. $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
y2, 93	2-digit number divided by I-digit with remainders	Use lollipop sticks. $13 \div 4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with I left over.	Children to represent the lollipop sticks pictorially. There are 3 whole squares, with I left over. CONTINUED ON NEXT PAGE	$13 \div 4=3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4 , with 1 left over' As numbers become larger, children can use known facts to make larger jumps

Jesson's C.E. Primary School Calculation Policy

	CONTINUED	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	
У3, 94	Sharing using place value counters.	$42 \div 3=14$ Ensure children are sharing the counters by their value, so exchanging where needed. 000000 10s 1s 0000 0000 0000 - 00	Children to represent the place value counters pictorially. Each group has 14 so $42 \div 3=14$	Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$
у3, 94	Short division 2 digit by 1 digit	This example includes regrouping. Base 10 should be used for children who need less abstract representation. $£ 72$ shared between 3 people $=$	Children draw the counters pictorially.	Use the formal method. $\begin{array}{\|r\|cc} f 72+3= & 2 & 3 r 2 \\ \cline { 2 - 3 } & 7 & 7 \end{array}$

Jesson's C.E. Primary School Calculation Policy

Year	Strategy	Concrete	Pictorial	Abstract
y4, 95	Short division y4: 3 digits Y5: up to 4 digits	Use place value counters to group. $615 \div 5$ I. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with II ten counters? 5. Exchange I ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold. Ensure they understand that the groups are written above the 'bus stop' lines and not below like when they were using the place value counters.
Y6	Short division with decimals	Children to use plastic money or place value counters	Children to draw the counters/coins pictorially	
			 20	

Jesson's C.E. Primary School Calculation Policy

Conceptual variation; different ways to ask children to solve $615 \div 5$

[^0]: Key mathematical terms
 *manipulatives: these are concrete resources that will help them visualise their calculations (for example-cubes, dienes, place value mat)
 *CPA: Concrete, Pictorial, Abstract
 *equation: the correct way of saying 'number sentence'
 *regroup: when amounts are 'carried over' to the next column; they are exchanged to the next column. For example-swap I 10 stick for 10 Is cubes

